domingo, 28 de outubro de 2012

Enunciado de Kelvin-Planck - Refrigerador - Bomba de Calor


ENUNCIADO DE KELVIN-PLANCK

ENUNCIADO DE KELVIN-PLANCK

Figura 8 - Enunciado de Kelvin Planck 

Fonte: (WYLEN; SONNTAG; BORGNAKKE, 2000)
 
É impossível para qualquer dispositivo que opera num ciclo receber calor de um único reservatório e produzir uma quantidade líquida de trabalho.
 
Este enunciado estabelece que é impossível construir uma máquina térmica que opere num ciclo e que receba uma determinada quantidade de calor de um corpo a alta temperatura e produza igual quantidade de trabalho (Fig.8). A única alternativa é que alguma quantidade de calor deve ser transferida do uido de trabalho a baixa temperatura para um corpo a baixa temperatura. Dessa maneira, um ciclo só pode produzir trabalho se estiverem envolvidos dois níveis de temperatura e o calor for transferido do corpo a alta temperatura para a máquina térmica e também desta máquina térmica para o corpo a baixa temperatura. Em outras palavras, é impossível construir um máquina térmica que apresente e ciência térmica igual a 100%
 

Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: 

Aula anterior: Eficiência Térmica




Refrigerador

Refrigerador

Figura 9 - Sistema de refrigeração e seus componentes básicos
Fonte: (WYLEN, 1992)
 
Refrigerador é um dispositivo cíclico que permite a transferência de calor de um meio a baixa temperatura para um meio a alta temperatura. O fluido de trabalho usado no ciclo de refrigeração é chamado de refrigerante. Na Fig.9 está ilustrado um ciclo de refrigeração por compressão de vapor que tem quatro componentes: um compressor, um condensador, uma válvula de expansão e um evaporador.
 
O refrigerante entra no compressor na forma de vapor sendo comprimido à pressão do condensador. O vapor deixa o compressor numa temperatura relativamente alta e se resfria e condensa à medida que escoa pelo condensador, rejeitando calor para o meio circundante. Em seguida, o refrigerante entra num tubo capilar, onde sua pressão e temperatura caem drasticamente. Então, o refrigerante a baixa temperatura entra no evaporador e evapora ao
retirar calor do espaço refrigerado. O ciclo é concluído quando o refrigente deixa o evaporador e torna a entrar no compressor.
 
Na Fig.10 tem-se o esquema de um refrigerador, onde:
  • QF é o calor removido do espaço refrigerado à temperatura TF;
  • Qé o calor rejeitado para o ambiente quente à temperatura TQ; e
  • Wliq,e é o trabalho líquido fornecido ao refrigerador.
 
Figura 10 - Esquema de um sistema de refrigeração
Fonte: (ÇENGEL; BOLES; CÁZARES, 1996)
 

Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: 

Aula anterior: Enunciado de Kelvin-Plack


BOMBA DE CALOR

BOMBA DE CALOR

Figura 11 - Esquema de uma bomba de calor
Fonte: (ÇENGEL; BOLES; CÁZARES, 1996)
 
Bomba de calor é outro dispositivo que transfere calor de um meio com temperatura baixa para outro com temperatura alta, como refrigeradores funcionando com um mesmo ciclo, mas com objetivos diferentes. Ou seja, enquanto refrigeradores buscam manter o espaço refrigerado removendo calor deste espaço, a bomba de calor busca manter o espaço aquecido a uma temperatura alta.
 
Conforme esquema na Fig.11 a bomba de calor remove o calor de uma fonte a baixa temperatura e fornece calor a um meio a alta temperatura.
 

Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: 

Aula anterior: Refrigerador


Coeficiente de Performance



Coeficiente de Performance
Coeficiente de Performance, Bomba de Calor, Refrigerador
Coeficiente de Performance, Bomba de Calor, Refrigerador


Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: 

Aula anterior: Enunciado de Kelvin-Plack

quinta-feira, 25 de outubro de 2012

Eficiência Têrmica



Eficiência Têrmica

Na Eq.2 (acima) Qs nunca é zero, portanto, apenas uma fração do calor transferido para a máquina térmica é convertida em trabalho líquido. Esta fração é chamada de eficiência térmica e está expressa nas Equações 3 e 4.

Dispositivos cíclicos como máquinas térmicas, refrigeradores e bombas de calor, operam entre reservatórios de alta e baixa temperaturas, conforme a Fig. 7, onde:
·         Q= calor transferido do reservatório de alta temperatura (TQ) para o dispositivo
·         QF = calor transferido do dispositivo para o reservatório de baixa temperatura (TF)
Figura 7 - Esquema de um máquina térmica entre reservatórios de alta e baixa temperatura
Fonte: (ÇENGEL; BOLES; CÁZARES, 1996)

Assim, o trabalho líquido pode ser obtido da Eq. 5. Observe que os valores de QQe QF estão entre módulos e que a eficiência de uma máquina térmica é sempre menor que 1.
As eficiências térmicas são relativamente baixas, por isso, quase metade da energia fornecida termina em rios, lagos ou atmosfera. Por exemplo:
·         para motores de ignição por centelha a gasolina a eficiência é de cerca de 0,25;
·         para motores a diesel 0,40; e
·         para turbinas é de cerca de 0,60.

Exercício Resolvido:


A potência no eixo do motor de um automóvel é 136 HP e a e ficiência térmica do motor é igual a 30%. Sabendo que a queima do combustível fornece 35000 kJ/kg ao motor, determine a taxa de transferência de calor para o ambiente e a vazão mássica de combustível consumido em kg/s.
 
Exercicio resolvido eficiência têrmica, máquinas térmicas, termodinâmica
 



Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: 

Aula anterior: Máquinas térmicas


Leia mais: http://www.cursoengenharia.com

segunda-feira, 22 de outubro de 2012

Máquinas Térmicas


Máquinas Térmicas

Figura 3 - Fonte e Sumidouro
Ao desenvolver a Segunda Lei da Termodinâmica, é interessante inicialmente o entendimento de reservatórios de energia e máquinas térmicas.
RESERVATÓRIOS DE ENERGIA TÉRMICA
Grandes corpos de água como os oceanos, lagos e rios, bem como o ar atmosférico, podem ser modelados como reservatórios de energia térmica (ou simplesmente reservatório), que são corpos com uma capacidade de energia térmica (massa x calor especí co) relativamente grande. Estes reservatórios podem fornecer ou remover quantidades nitas de calor sem sofrer qualquer variação de temperatura. Um reservatório que fornece energia na forma de calor é chamado de fonte, e um reservatório que recebe energia é chamado de sumidouro Fig.3.
Na verdade, todo corpo cuja capacidade de energia térmica seja grande com relação à quantidade de energia que ele fornece ou remove pode ser modelado como um reservatório. Por exemplo, o ar de uma sala na análise da dissipação de calor de um aparelho de TV, pois a quantidade calor transferido pela TV para o ar da sala não é su cientemente grande para gerar um efeito perceptível sobre a temperatura da sala.
MÁQUINAS TÉRMICAS
Considere o sistema ilustrado na Fig. 4, como mencionado anteriormente, o trabalho mecânico realizado pelo eixo é convertido em energia interna da água que por sua vez pode ser retirada da água sob a forma de calor. O processo inverso não ocorrerá, pois se transferirmos calor de volta para a água, isto não fará o eixo girar.
eixo realizando trabalho num reservatório de água, máquinas térmicas
Figura 4 - Trabalho mecânico é convertido em calor, mas o processo inverso não ocorrerá.
Máquinas térmicas (vide esquema na Fig.5) são dispositivos que fazem a conversão de calor em trabalho, e tem as seguintes características:
  • recebem calor de uma fonte à alta temperatura (energia solar, combustão de um gás, etc.);
  • convertem parte de calor em trabalho em geral, com um eixo rotativo;
  • rejeitam o restante do calor para um sumidouro à baixa temperatura; e
  • operam num ciclo.

esquema de uma máquina térmica
Figura 5 - Esquema de uma máquina térmica
A usina à vapor é uma máquina térmica de combustão externa (i.e. a combustão ocorre fora da máquina) e a energia térmica liberada durante esse processo é transferida para o vapor sob a forma de calor. O esquema na Fig.6 ilustra um exemplo que tem variáveis, onde:
  • Qc é a quantidade de calor fornecida ao vapor na caldeira a partir de uma fonte de alta temperatura;
  • Qs é a quantidade de calor rejeitada pelo vapor no condensador;
  • Ws é o trabalho realizado pelo vapor à medida que se expande na turbina; e
  • We é o trabalho necessário para comprimir a água até a pressão da caldeira.
O fluido utilizado para transferir e receber calor numa máquina térmica, que neste exemplo da usina é o próprio vapor, é chamado de fl uido de trabalho.
O trabalho líquido dessa usina é simplesmente a diferença entre os totais de saída e entrada de trabalho, conforme a Eq. 1.
                    (1)
esquema de uma usina de vapor
Figura 6 - Esquema de um usina de vapor
O trabalho líquido (Wliq;s) também pode ser determinado em função da transferência de calor, pois esta usina pode ser analisada como um sistema fechado, conforme Eq.2. Considerando a fronteira do sistema indicado na Fig. 6, tem-se portanto que a variação de energia interna  é zero, assim tem-se

                 (2)

Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica

Próxima aula: Eficiência Térmica




Leia mais: http://www.cursoengenharia.com

domingo, 21 de outubro de 2012

Introdução à segunda lei da termodinâmica



Introdução à segunda lei da termodinâmica
Figura 1 - Uma xícara de café não cará mais quente numa sala fria

Uma xícara de café quente (Fig.1) irá se esfriar numa sala fria. Esse processo obdece à primeira lei, pois a quantidade de energia perdida pelo café é igual à quantidade ganha pelo ar do ambiente. No entanto, mesmo não sendo lógico, o processo inverso (i.e., o café ficando mais quente nesta sala) não viola a primeira lei, pois a quantidade de energia perdida pelo ar seria igual à quantidade ganha pelo ar.

Ou seja, não há uma passagem espontânea de calor de um corpo frio para um corpo quente, o que sempre ocorre é o inverso, passagem espontânea de calor de um corpo quente para um corpo frio. Os processos ocorrem numa direção e não na direção oposta e a primeira lei não faz restrições à direção de um processo, mas isto não signi ca que o processo não possa ocorrer.

Ou seja, não há uma passagem espontânea de calor de um corpo frio para um corpo quente, o que sempre ocorre é o inverso, passagem espontânea de calor de um corpo quente para um corpo frio. Os processos ocorrem numa direção e não na direção oposta e a primeira lei não faz restrições à direção de um processo, mas isto não significa que o processo não possa ocorrer.

A introdução da segunda lei da termonâmica resolve esta inadequação da ocorrência de processos termodinâmicos. Pois, enquanto a primeira lei da termodinâmica estabelece a conservação de energia em qualquer transformação, a segunda lei estabelece condições para que as transformações termodinâmicas possam ocorrer.

Foram essas situações que deram origem a segunda lei da termodinâmica. Existem vários enunciados da segunda lei que serão discutidos adiante em conjunto com dispositivos de engenharia que operam em ciclos (Fig.2). Por enquanto, vamos entender que a segunda lei da termodinâmica expressa que "a quantidade de entropia de qualquer sistema isolado termodinamicamente tende a incrementar-se com o tempo, até alcançar um valor máximo".

esquema de uma máquina térmica, segunda lei da termodinâmica
Figura 2 - máquinas térmicas e a segunda lei

Em outras palavras, quando uma parte de um sistema fechado interage com outra parte, a energia tende a dividir-se por igual, até que o sistema alcance um equilíbrio térmico. O calor ui espontaneamente de um corpo quente para um corpo frio, o inverso só ocorre com a realização de trabalho e não é possível transformar todo o calor retirado da fonte quente em trabalho.


Sumário geral

Sumário do capítulo Segunda Lei da Termodinâmica


Aula anterior


Leia mais: http://www.cursoengenharia.com